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EXPONENTTAL ESTIMATES AND THE SADDLE POINT PROPERTY
FOR NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

M. A. Cruz and J. K. Hale

1, Introduction, If AJ,BJ,J = 0,1,...,N, are n X n constant
matrices, det A # 0, and 0 = @y <@, < ++» <y =71 are real

numbérs, then a differential-difference equation of neutral type is

N N
(1.1) z’,j.-—-.oA Jx(t-wj) = 7 5=0P jx(tncoj) .

A fundamental vroblem is to determine in vwhat sense the asymptotic
behavior of the solutiocns of (1,1) is given from a knowledge of the
solutions of the characteristic equation

N o
(1.2) det A(M) = 0, A() = I, (M-B)e J,

Without exception, the results in the literature (see [1-5])
are based on the assumption that the initial function ¢ and its
derivative are defined. The estimate for the growth of the solution
end not the derivative of the solution is then expressed in terms of -
the roots of (1.2) and Q,é. This is very unsatisfactory for the
following reason. If a well-posed initial value problem has been
formulated for (1.l), then one has chosen a space § of functions
mapping [-r,0] into E® such that for any initial function ¢ in

S there is a solution x(p) of (1.l) with initial value ¢ which is




continuous in ¢ and the restrictiou of x(p) to [t-r,t] always
belongs to S. This defines a mapping T(t). S - 8 and one would
hope that the norm of this linear mapping could be obtained from the
golutions of (L.,2). On the other hand, the results in [1-5] use
more smoothness properties for ¢ +than are obtained for x(p) and,
therefore, one is not estimating the norm of T(t). It is the main
purpose of this paper to éive a class of equations (1.1) for which
one can estimate the norm of T(t) wusing (1.2). The results are
stated in terms of general functional differential equations which
include differential-difference equations. An application to '
perturbed linear equaticns is indicated by discugsing the saddle
point property for nonlinear autonomous systems,

Finally, to avoid unnecessary complications in the specifica-

tion of the basic space S, we use the approach in [5] by considering

the integrated form of (1.1),

,, _— .
(1.3) I [.;Zk:OAkx(t-mk;J = L _oBx(t-o3 ).

For this equation, one has a well-posed initial value problem for
any initial function ¢ which is continuous on [-r,0] since it
is not required that x be differentiable in %, but only that
Zzgoﬂkx(t-wk) be differentiable, Consequently, it is possible to

choose S as the space of continuous functions.

2. Notations snd summary of known results. Let R = [O,oo),En be




a real or complex n-dimensional linear vector space with norm |+,
r 8 0 a given real number, and C be the space of continuous
functions mapping [-r,0] into E® with lo] = Sup-rgegol¢(6)|°
Single bars are generally used to denote norms in different spaces,
but no confusion should arise, If x is a continuous function de-
fined on [o-r,c+A], A 2 O, then, for each t € [o,0tA], we let

X, € C be defined by xtée) = x(t+8), -r = 0 £ O, Suppose

2) L) = f [an(8)Io(6)
I o
b) &@) =/ [3(6)10(6)

(2.1) o
c) |/ [au(e)lp(e)] s v(s)|ol|
-5

d) D(p) = ¢(0) - &(p)

where n,u are n X n matrix functions with elements of bounded
variation on [-r,0] and y(s), s z O, is continuous with ¥(0) = O.
An autonomous linear functional differential equation is defined to

be

(2.2) %‘E D(x.) = L(x.).

A solution x = x(9) of (2.2) through (0,9), ¢ € C, is a
continuous function defined on an interval [-r,A], A > O, such that

Xy = ¢ and D(x is continuously differentiable for t € (0,A)

2



and satisfies (2,2)., It is proved in [5] that there is a unique
solution x(¢) through (0,p) defined on (-w,0) and x(p)(t) is
continuous in t,p. If the transformation T(t): C -»C 4is defined
by

dgf

(2.3) x, (@) T(t)

then it is also shown in [5] that (T(t), t 2 0) is a strongly con-

tinuous semigroup of linear operators with infinitesimal generator

AL D) ¢, ap(6) = 9(6),
(2.4) D) = (p €CL ¢ €C, $(0) = g(@) + L))
and the spectrum o(A) consists of all those A\ for which

(2.5) det A(N) = 0, A(A) = A.[I - joe"edp(e)] - foemdn(e).'
- % 4

Moreover, there are real constants K 2 1, a such that

t
(2.6) |2, @)] = |T(t)p] = ke™"9], tz0,0ec.

The basic problem is now to determine the relationship between
inf (a: there exists a K = K(a) so that (2,6) holds} and
sup (Re Al A satisfies (2.,5)}. For any A satisfying (2.5), there

is a solution e’ of (2.2) for some vector b, Therefore,



sup (Ms *+*} % inf (a: ¢++}, It certainly seems as if these two
numbers should be the same, but we are unable to prove this at the
present time, 1In [6], D. Henry has shown these nuumbers are equal
if the space C is replaced by Wél), the space of functions which
have square integrable first derivatives. In order to obtain some
results in C, we impose in the next section some conditions on the

"difference operator" D,

3. The characteristilc eggation. Suppose “o is an n X n natrix

function whose elements are of bounded variation, 79(5) is a con-
tinuous nonnegative scalar function defined on [O0,), 79(0) = 0,

and let

a) D°() = 9(0) - &°(9)

0 - P
(3.1) b) g (9) = {r[du (6) 10 (6)

(o]
e) IS [a°(8)Ie(6)] s ¥°(s)sup_p ol0(0)], 0= sr. ;
-5

In this section, we consider in detail a special case of (2.2),

namely, the functional "difference" equation

(3.2) D°(yy) = D°@), tz0,

Y0=CP

and, in particular, the nature of the characteristic equation of this




system. Afterwards, the results will be applied to obtein informa-
tion about the characteristic equation of the more general system
2.2).

Let us dénote the semigroup and infinitesimal generator

associsted with (3.1) by T°(t) and Ao, respectively, and let
0 C A6, 0
(3.3) (M) = 1= [ e au(e).
-r

The characteristic matrix of (3.2) is then given by A.AO(A.).
Along with system (3.2), we consider the "homogeneous" equa-

tion

(3.14) Do(yt) =0, tz0

o
V=9 D) =0

Definition 3.1, If D° is given in (3.1), the order & of D
— 1

is defined by

A

(3.5) a.Do = inf (real a! +there is a K(a) with |T°(t)q>|

K(a)ee‘tha!, tz 0, for all @ with Do((p) 0}.

This definition is equivalent to

(3.6) a , = inf (real a! for any ¢ in C, 0°(p) = 0, there is a
D .

Klp,8) with |1°(t)o| = K@p,2)e™, ¢z 0).




In fact, since p° is continuous end linesr, the set consisting of
ell @ din C such that D°(p) = O is a Bansch space and the
operator To(t) is a continuous linear mapping of this space into
itself for each + & 0. The principle of uniform boundedness now
implies that the set on the right hand side of {3.6) belongs to the
set on the right hand side of (3.5). The converse inclusion ls ob-
vious and this shows that a o Mey be defined by either (3.5) or
(5.6). i

Notice that a o i1s determined by the exponentiel behavior
of the solutions of tﬁe homogeneous equation (3.4) and not the complete
equation (3.2). The reason for this is the following: every con-
stant function satisfies (3.2) regardless of the nature of the
operator Do. This is a consequence of the fact that A = 0 always
satisfies the characteristic equation. The homogeneous equabion is
considered to eliminate this obvious common relationship among all
operators Do.

In general, we do not know how to relate the number a
with the voots of the characteristic equation. However, the ?ollow-

ing lemma is a special case for which this relationship is knowm.

A more general result is contained in [7].

Lemma 35,1, If

N .
(3.7) 2°() = 9(0) - L_AR(-7), <7 s,




where Tb/Tk is rational if N > 1, then

(3.8) (Re M {5 'M“)
% g = sup (Re A: det I - e = 0},

. )
Proof. If D (p) = ¢(0), then abo = ~®, Suppose bDo is the
sup in (3.8) end a>"b o* If y is a solution of DOyt = 0, X, = @
D

and y(t) = ee‘tz(t), then

Do(ea"zt) = 0

If we let Dl(W) i Do(ea"W), then
N -a'rk
Dl(W) = W(O) = zk=lAke \V("Tk)

and

- ('v+a)1:k>

N
bD = sup {Re v. det@: - Z’k:-lAke = 0}

N -AT
sup (Re (A-a). det (I - Z‘x.-.-lAke k) = 0)

a = a<0,
Do

Therefore, D.'L is a uniformly stable operator and Lemma 3,2 in [8]

implies the existence of an « >0, p >0, f; > 0, such that




|2, ()| 5 B || 5 B0 o], b3 0.

Consequently, there is a ﬁe > 0 such that

(a-ci)t

, ; £, ,
ly | = Bge lo| = Baee‘ lel, t=o.

This implies a o =D o

D D

For any c>0,~thereisaxwithb -8 <RelM£b
o o
D D

At

and an n-vector ¢ such that y(t) = e ‘c 1s a solution of

Doyt-, = O. Therefore, a . >b , -¢& for every € > 0. This proves

D D

&, = b o and the lemma,

D D

Lemme, 3.2, There exist 9y in D(A®), § = 1,2,..4,1, such that if
® = (91,eeyP,), then D(T°(£)0) = D°(9) = I, the identity. Also,

for any a > a ,, there iz an M = M(2) such that
D

(3.9) [7°¢t)e] = M(1+e®%), ¢z o.

Proof: Let us consider the equation (3.4) and, in particular, all

solutions of this equetion which are polynomiels in t, If we let

1 &l o
3"":'—;3’5(%): J =0,1,2,...

o
Pigr () =



where AF(L) 1s defined in (3.3), then a direct calculation shows
that

m tk
(5.10) Y(t) = Lok BT

is & solution of equation (3.4) if and only if

(3.11) ad" = o,
-0\ 0 o . - -
P, (0)B5(0) +++ B, (0) o,
(o] (o] m
A:l - 0 Pl(O) pee Pm(O) » o = am-l
: L
O

b 0 0 LA Pl(o) - Lao A

Let m, be the smallest integer such that the equation (3.4)

has no polynomial solution of degree m,., Then for every ab # 0, and

o}
every o, ...,0% , the equation A; a® # 0. If we choose the vector
m.- 0 m -1l 0
@O  such that AJ .00 = 0, then the equation (3.11) is equivalent

0]
to the equation

*] (o] (o]
Pl(o)aho + Pe(o)a:mo_l dooet Pmd+1(°)°b = 0.
A%

On the other hand, by the choice of m, this equation has no solution

m

0

except o~ =0 if a # 0. Therefore, the equation

O (¢] (o)
’E’.l(o)o:m0 + P’z(O)a:mo_l +oooq Pho+l(0)ao =b

m

has a unique solution o O witn %y # 0 for cvery b, In particular,

the matrix equation




=
O H

Ay oo

O
oo e

f
o
[l

where I is the n xn identity matrix, has a unique nmy X m, ,

matrix solution which we denote by (3.1l) with each g; an nxn

matrix,
m

If y is defined by (3.10) for this o ° and m=m

0 we

gee that

o m0 N I amo-k
D (vy) = LoD \(t+)" =

mO ’ k 0 tk"'d
= & olZ =0t 341 ) TERIT) O -k

. 0
mo [ mo-Bo . . 2
= 2y olZyof v+1(°)°‘mo-z-v.ZT

I, t e (-,m),

Therefore, y(t) is a continuously differentiable solution of (3.2)
on (-o,®) with initial value ¢ &t t = O such that 0% = I.

Since D°(7,) =0 for t in (-w@), it follows that ¢ is in
().

It remains only to prove the estimate (3.9). For any a>a ,
D

there is a constant M, = Ml(a) such that for any a with

aDo + (a.-:aDo)/ 2<a<a,




since ¥, satisfies (3.4). Choose & # 0. 8ince

e
y(t+0) = 9(0) + é y(s)ds

for t2 0, -r 26 £ 0, this ylelds the estimate

.
‘ . 4

at
ot (s 2), oa

a

Since & < a, one can obtain the estimate (3.9).

For any H € C([0,®),E"), H(0) = O, it follows from [8] that
there is en n X n matrix function B % [-r,o) -»Enz of bounded
veriation on compact sets of [-r,®), Bo(t) =0, -r st s 0, such

that the soluticn of

(3.12) D°(y,) = D°(@) + H(t), +

Yo =@

w
o
-

is given by the variation of constants formula as

(3.13) Ve = T (t)o

£
é [4,By_ TH(s).

Lemma 3,35, For any & > a
D

o €>0, 2+ €#0 thereisan M=

M(a €) >0 such that

A

t
6, €t
(3.1%) |é (4B JH(s)| s M(1+e®")e" sup _ _ [H(s)], ¢tz o0,

Proof, If y is the solution of (3.2) and ¢ is given in Lemma 3.2,

then 2z, =7, - TO('t)cbDO(cp) satisfies Do(zt) = 0, Vzo = - 00°(p).
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Therefore, for any a >a ,

there is a Kl such ‘that
D

e&'b |

t
2] % K] = K g - 00°()].

1

Lemma 3,2 and the continuity of Do imply the existence of a

K, = Ke(a) such that
. at
1°(t)0] = Ko (1+e*) o], t =z o.

Using an argurent similar to the proof of Theorem 5.1 in [9], there

is & K = K(a) > 0 such that

1
|2°(t)] + cf) |a_B°(t-5)| = k(+e*), tz o0,

If k = k(t) 1s the integer such that k £ t < k + 1, then, for any

€>0,a+€#40,

t o ktl a] :
lé [d4.B. JH(s)| sk j‘:‘l(1+e ) supy o H(S)|
k+1l >

~ (a+€)J

s [K(k+l) + lee ]Supo§s§t|ﬂ(s)|

(ee) (k1)

$ KD + N SUPog syl HS) :

e - :

e M(l-i-ea"b)@gt supossétlH(s)l




1k

for some constent. M., This proves the lemma.

Lenma 3.4, For emy a >a _, the roots of

(3.15) det A°(M) =0, A(A) =1I- joe"ed;f(e)
=Y

have real parts less than or equal to a and there is a 5(a) >0

such that |det A°(A)| 2z B(a) on Re A = e.

Proof: If A satisfies (5.15), then there is a nonzero n-vector
At

b such that y(t) = e” b satisfies Do(yt) = 0. Definition (5.1)

of a g implies the first part of the lemma.
D

If the second statement of the lemma is not true, there is a
sequence (A}, k = 1,2,... of points on Re M = a such that
|aet A°(\)| = 1/k, k = 1,2,... . This implies the existence of en
eigenvalue of AP(xk) with modulus = (l/k)l/n. Suppose §, is
such an eigenvalue of AP(xk) and Dby, |b | =1, is an elgenvector
associated with /.. Mt

The function yk(t) = e b satisfies

hkt

o, k
D (yf) = e gkpk, t20

o, k
y0=e b,D(y)

k o) = &P~

If ¢ is the matrix defined in Lemma 3.2 and zﬁ = yi - To(t)¢§kpk




then

t
() = (e ®

- 1)tby, t20

k k o, k
zo = xo - ¢§kpk, D (zo) = 0,

The variation of constants formula (3.13) implies

k MeS

2, = To(t)zo - f [d Bt I - 1)gkpk.

From the fact that Do(zg) = 0, the definition of a and

D
« Lenmas 3.2 end 3.3, for any a, a /<8<a,€>0,a+€#0,
D
there is a constant M = M(a,€) such that
: k O/inmp - k
(3.16) |yl = |T (t)¢gkpk| + [zt[
. 39
s M(l+e )|§k[ + Me® []§k| +osup_ o e ]
G '
+ M(1+e” )ee lck'sup0§s§t'e - 1.

On the other hand, the definition of y% end the fact that 2 < a

implies the existence of a T > 0 such that

k at ao at ad
nyl = € SUp_ L gg0® > Me sup_o0%

for t 27T, k=1,2,,.. . Since -0 as k - o, this contradicts

Cx

PR et ST
.
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(3.16) and proves the lemma.,

Lemma 3.5, Suppose D° is defined in (3.1), AP(L) in (3.3),

AR SNSRI 4O 2

o€ acl([-r,O],En ), end 1 is en n Xn matrix function of bounded
variation, For any a > a ,, the equation

D

(%.17) det A(M) = 0, A(M) = A[A°(A) - foe"ea(e)de] - foe’“"dn(o)
- -Y

has only a finite number of roots N with Re M 2 a.

Proof. If we consider A(M) as the characteristic matrix of a

neutral functional differential equation (2.2), then the estimate
(2.6) implies there exists a real number c¢ such that Re A < ¢
for all ) satisfying (3.17). If & 2 c, then the sbove lemma is
true, If a < c, then Lemma 3.4 implies there is a & = 8(a,c) >0
such that det Ab(x) z 8 asRe\sc. From (3.17), the Riemann-

Lebesgue' lemma, and the fact that “o satisfies (3.lc),

det A(A) = AAC(A) + h())
where h(A)/A" -0 uniformly as |[A| -, 2 = Re A £ ¢. Therefore,
all zeros of (3.17) in this strip must be bounded. Since det A(M)

is an entire function of )\, the lemma is proved.

4, Estimates on the complemertary subspace. Suppose Do is defined
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1 n2
in (3.1), a € £ ([-r,0],E }, n is an n X n matrix function whose

elements are of bounded variation and let

(h1) Do) = 1°) - f a(e)p(6)a6 SF p(0y - J [dn(e)Io(e)
-) =Y

L(9) = J [4(0) 10 0).
-T

For the linear system (2.2) we denote the associated semi-
group and infinitesimal generator by T(t) and A, respectively.
Recall that the spectrum o(A) of A coincides with the roots of
the characteristic equation (2.5).

For sny a>a ., it follows from Lemma 3,5 that the equation
(2.5) has only = finize number of roots A with Re » 2z a, If
A= (he o(A): Re A 2 a}, then it is shown in [5] that the space
C can be decomposed by Aa as C = Pa.e’ Q‘a where Pa.’ Q‘a. are
subspaces of C invariant under T(t) and A, the space P, is
finite dimensional and corresponds to the initial values of all
those solutions of (2.2) which are of the form p(t)elt where p(t)
is s polynomial in t and 2 € Aa. Therefore, the spectrum of A

restricted to Q  is a(A) \ A . Our main goal in this section is

to prove there is a constant K(a) such that
at ,
|T(t)e| s K(a)e lo|, t=z0, ¢ eQ.

To do this, we need the following lemma which is essentially
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contained in the proof of Theorem IV.Ll of [5].

Lemma 4,1l. Suppose & i1s a real number such that only a finite
number of roots of (2.5) have real parts greater than or equal to
s, there is a congtant m > 0 such that, for all real ¢,

|det (a+it)| 2 m >0 and A'l(a+i§) = ﬁ(lgl'l) as |g] 2w, If
C is decomposed by A, = (e o(A): ReAza) as C= Paﬁ) Qg

then there exists a K = K(a) z 1, such that
% .
(4.2) |(t)ol = ke™([o[+[$]), t 20,0 ¢ D(a)na,.

For any H € C([0,®),E"), H(0) = G, it follows from [9] that
2
there is an n X n matrix function B. [-r,0] ~E"  of bounded
variation on compact sets of [-r,®), B(t) =0, -r £t = 0, such

that the solution of

4.3) & [D(x,) - H(t)] = L(x,), =0,

x0.=(P

is given by the varistion of constants formula as

t t
(b.4) X, = T(t)p - é‘ [dth-s]H(s) = T(t)p + (f) Bt-sdsH(s)’

P
If we let xta‘ be the projection of X, onto Pa. defined by the
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P
above decomposition of C, then it follows that there is & B,°,
P

tzo, Boa = 0, of bounded variation on compact subsets of [O,w)

such that x % satisfies (4.4) with x , ¢, B, replaced by

a . : : 8 a
Xy, 9 , B respectively. If we define Bt = B, - B, then

(4.4) is equivalent to

P& P’& L PB.

(4.5) x, = T(t) - é [4.B,  JH(s),
Q Q t Q

X, = T(t)p * - é [a B, " JH(s).

Thecrem 4.1, Suppose D 1is given in (k.,1), If a > a o 1s such

D
that M e o(A) implies Re A # a end C is decomposed by A, =

(L e o(A): Re x>0} as C=P, ® Q, then there is a constant
M= M(a) such that

(4.6) IT(t)o] = Me¥ol, tz0, 9 eqQ

v 1 3 t
(4.7) |8.° + é la B2 | sme™, tzo,

where B 1is the matrix occurring in the variation of constants

Q
formula (4.4) and Bta is defined as above,

Proof, Case L. o= 0, L =0; that is, the equation

(‘-&.8) Do(x_b) = Do(q))’ tzo0, xO =0 € QAa.

s e e g T : s
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If ¢ is the matrix given in Lemma 3.2, then
o 0/ Yo 0 Lm0 % o
T°(t) = TO(8)0 "D°@) + T°(t) (p-0 “0°(9).

Since Do(q)-cbl)o(cp)) = 0 and each column of ¢ is in D(A%) , the

definition of = o and Lemmas h.l énd. 5.2 imply the existence of

D
K &« K(a) such that

17°(t)0] = ke®*|0%(g)] + Ke¥|p-0D°(0)] .

Since D is continuous, this completes the proof of the theorem for
the case a=0, L=0.

Reletion (k.7) follows as in the proof of Theorem 3.1 in [9].
Case 2, o # 0, L#£0. In this case, A(A) is given by (2.5),

(4.9) . det A(M) = A"det A°(A) + h())
adj A(N) = M 'ladj AO(A.) + G(M)

A(x)'l = [det A(x)]'lad.j A(M)
= -,l: NS 1¢Y)

-1
A det AT(A)

where adJ A(M), adj A°(\) designate the cofactor matrices of



A(N), A°(\), respectively, If &> & o then Lemma 3.k, the facts
D
that uo,n are of bounded varietion, uo is nonatomic at 2zero and
n

o€ £5([-r,0],E 2) imply that n(A) = SO, 6(r) = GO,
W(A) = ﬁ(x'e) a8 |A| - o, Re A = u,

Using standerd Laplace transform techniques, for any ¢ in
DA) nQ, T(tYp 1is given by

(4.10) JOUORY| Matne ) - » f°au<e>(ffe"“3'°"¢<a>aa
' o
8

0 B 0
- [ ane) e P-2y (w)aey - / e*(®-g (3)dajan

where @ 1s the n X n matrix function of bounded variation given by

n(o) = u°(e) + foo(s)ds and

/ ( 1 fa.+i(n

= 27Fi)- lim [

Cq ©2® anin

, 6 ()

The term containing [ e ¢ (a)do and the one containing

0
n are treated in the same manner as in the proof of Theorem IV.l

of [5]. Using the fact that A"'l(x) is given by (4.9), the re-
meining terms in (%.10) may be written as
Ml o
/

p
ML 0™+ WMD) - xS aute) [ o (ahaaen

r
a

= 1°(t)p + ! Mu(n)eM[D@) - & [ () éﬁe“ﬂ'“%p(a)danax-
-7
a

The first term in this expression'was treated in case 1., Since



W(A) = 0(x'2) as |A| - o, Re M = a, the first term in the integral
adnits an estimate of the form Keatl¢|. Since M (\) = c?(h'l) as
M| = ®, Re A = &, the last term in the integral can be shovm Lo have
an estimate of the same form by using arguments similar to the one
used for the 17 terms sbove,

Since 2(A) 1is dense in C, estimate (4.6) holds for all ¢
in €N Q.. Relation (k.7) 4is verified as in the proof of Theorem

3.1 in [8]. This completes the proof,

Corollary 4,1, Suppose D is given in (L,1), aDo < 0, and all roots
of (2.5) have negative real parts. Then there is an o >0, K> 0

such that

IT(t)p] = ke 9], tz0, ¢ec,

1 -ott
'B-b' + ‘Cf) ldth-sl =Ke ™, tz0,

Proof. Use Theorem 4,1 with a = - greater than all roots of (2.,5).

5. The saddle point property. Suppose D,L satisfy (2.1). In

this section, we consider the linear system (2.2) along with the

perturbed iinear system
d -
(5.1) = [D(xt) - m(xt)] = L(xt) + F(xt)

where F,g satisfy the relations

'%w,, T e
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(5.2) F(0) = 0, G(0) =0
|F@) - FW)| = u(o)|e - ¥|
la@) - a(¥)| = u(o)|e - ¥

for |@|, |¥! < 0 and some continuous nondecreasing function u(o)
Tt will also be assumed that the roots of the characteristic

equation

° e ° o
(5.%) det A(M) = 0, A(M) = AM[I - [ e du(e)] - [ e dn(e)
-r -r
have nonzero real parts and &, <0, where & 1s defined in
Definition 3,1. This latter assumption implies that tha space C

can be decomposed as
C=U® §,

where U is finite dimensional and the semigroup T(t) generated
by (2.2) can be defined on U for all % € (-o,o) and there are

K>0, a>0 such that

(5.4) [2(t)ol s ke™lpl, t30, U

|z(t)ol s ke o], tz0, o es.

For any @ € C, we write ¢ = wu'+ ms, mU €U, ms € S, The

gt oo e g A A R Ky T b s ST et 0 \,“_v.._.,
AR AT o 1 g
Ry A i SR SR R e, R



decomposition of C as U @ S defines two projection operators
Tyt C U, U =1, Tgl C o8, TS =8, T =T - M.

Suppose K,a are defined in (5.4) and x(p) 1is the solution
of (5.1) with initial value ¢ at zero, ¥or any & > 0, let

By = (@ € C: |p] =8) and

(5.3) -%= (p € C: ‘PS € BB/QK’ xt((p) € By, tz0],

. U
%5= p ecCi o GBS/EK, x,o(cp)eBS, t = 0},

If I 1is a subset of C which contalns zero, we say TI' is

tengent to S at zero if i'rqu)i/ﬁ"lTSqﬂ -0 as ¢ -0 in T,

Similerly, T' is tengent to U at zero if |wgpl/[mp| »0 as

>0 in T,
We now give the main result of this section, generalizing

a theorem of Hale and Perelld [10] for retarded functional differ-

ential equations.

Theorem 5.1, With the notation as above, there is a 8> 0 such
that Ty 15 & homeomorphism from the set .Vé onto SN By /2K

and _95 is tangent to. S at zero, Also, Ty is a homeomorphism
from the set %6 onto U N By /2K and %, 1is tengent to U at

zero, Furthermore, there ares positive constants M,y such that

(5.6) |xt(q>)| éMe'Yt[cpl, tz0, 9 in %,
1x,@)] s lo|, tso0, 9 in %,

3 :
L g
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Finally, if F(9), G(®) have continuous Frechét derivatives with

respect to ¢ and hgl SN BB/2K -~ %, hye UN BS/QK - %, ere
| ! 1 ,

defined by hép = ws P, P €SN BS/EK’ hdp"7ﬁ1¢' P e ? n BS/QK’

then h, and hU have continuous Frech&t derivatives,

S
Proof; The proof will follow as much as possible the procf of the
saddle point property fof ordinary differential equations given in
Hale [1l]. Using the above decomposition of C, the solution x =

x(@) of (5.1) cen be written as

(a)‘xt=x§+xg
\ .8 s Ug
(5.7) (v) g = Mo-odxg + [ By [4.00x,) + F(x;)ds]
t

G(xs) + F(xs)ds]

N U U U
(e) X, T(t-cr)xcjr + £ B, _[d

for any o € (-e,»), Furthermore, K,o can be chosen so that

o .

. U ) ot

(5.8) |B| + {lldth_sl $Ke, ts50
185 + fl[d B85 | ske® 20
tos-s’ y» V=M

Relations (5.8) also imply that K can be chosen so that

o
U a(t-1
v(a.) £Idth-s'§Ke( ), tsTts0
(5.9) _ o)
-a(t=T
(b) é Idth-s' < Ke ,tztzo0,

T T
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Using relation (5.9) and proceeding in a manner very similar to [10],
one finds that for any solution of (5.1) which exists and is bounded
for t 2 0, there is a ws in S such that

£
(5.10) x, = T(t)o" + é By [4.G(x)) + F(x_)ds)

0 _
+ [ B-s[dsG(xt+s) + F(xt+s)ds]

for t 2 0., Also, for eny solution x of (5.1) which exists and

]

is bounded for t = O, there is a ¢U in U such that

U, U
(5.11) X, = T(t)p + é Bt-s[dsG(xs) + F(xs)ds]

o
+ [ B?s[dsG(xt+s) + F(xt+s)ds]

for t s 0, Conversely, any solution of (5,10) bounded on [0,w)
and any solution of (5,11) bounded on (-e,0] 1is a solution of
(5.1). Of course, estimates made in the integrals involving G

are made using the relation

t t
(5.12) £ B, A.G(x) = -B,_ G(x)) - £ [d.B,_ 1G(x ).

We first discuss the solution of (5;10) for any @S
sufficiently small. Suppose K,o are the constants used in (5.6), )

(5.8), (5.9) and u(c), o 2 0, is the function given in (5.2).

ﬁm%v‘," ST T T S S S T T
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Choose B > 0 so0 small that
(5.13) (8k+UK/a)p () < 1, 8K?(l+afl)(1*u(5))u(5) < 1l/2

end define %(®) as the set of continuous functions y: [0,®) - C

such that |y] def sup0§t<°°|yt| s 8/2, yg = 0. The set ¥(8) is
e closed bounded subset of the Banach space C([0,»),C) of all
bounded continuous functions mapping [O,‘oo) into C with the uni-
form topology. For any y in %(8) and any q)S in 8,

Icpsl s 8/2K, define the transformation _@-:gz(cps) taking ¥(8)

into ¢([0,»),C) by

L4 G(y +T(s)9°) + Fy +T(s)p")ds]

t S
(5.1’4-) (QY){-‘ = (f)‘ B‘t

Cy

+ f B_s[dsG(yt+s+T(t+s)q>S) + F(yt+s+T(t+s)q>S)ds]

for tz O, It is easy to see that Py e C([0,«),C) and (9’Y)§ = 0.

Also, |y, + T(t)¢° = & for all t 2 0. Consequently, from (5.12),
(5.13), (5.1%), (5.4) and (5.8),

2
[ (Py),| = (4K + -a—K)u(s)a < /2
and . Y(d) » ¥ (8)., Furthermore, in a similar manner,

|(@y), - (P2),| 5 (4 + Zyu(d)ly - 2| 5 5lv - 2|

g e
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for t20, ¥,z ¢ ¥(8) and P is a uniform contraction on ¥(3).
Thus, & has a unique fixed point ¥ = v (@5 ) in (%), The
function xz = y: + T(t)@s obviously satisfies (5, 10) and is the
unique solution of (5.10) with |y.| s 8/2 end x = ¢°, The fact
that & is s uniform contraction on ¥(9) implies that ‘y*ops)
end therefore x*ﬁps) are continuous in ¢S.

With x* defined as above, if x* = x*(9°), ¥ = x*@°),

then

FLR e w68 - 55 - o6 - 6@

t
. j [a B _I[6(x*) - a(x5)] + g B _[F(x¥) - F(¥¥)]as

o]
S i BOJ[G(xY, ) - GG, )1+ £BI_J8[F(":+S) - PR,

Consequently, if u(t) = |x§ - %:I, p = u(d8), then (5.4) and (5.9)

imply ‘that

(5.15) u(t) s K(L+p)e *u(0)

t

t
S =0 (t-
+ é |dth_S[u(s) + Ku é ¢-o(t-2)

u(s)ds

+ f |d B | (t+s) + Ku f e O‘su(ﬂl;-l-s)d.s.

For any t 2z 72z 0, relation (5.8), (5.9) and this latter expression
t v t

with the first integral written as [ = [ + [ imply that
O 0 7

s)]dSc
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(5.16) u(t) s K(l+u)e'°‘bu(0) + Kue'a(t"r)supogséwu(s)

t
~a(t-s) ‘
Tﬁsétu(s) + Ku é e u(s)ds

+ Ku sup

(-
+ Ku supOSSu(t+s) + Ku [ e'asu(t+s)ds.
- 0

We first show that u(t) -0 as t -, If this is not the

case, u(t) bounded for t z O implies there is a v >0 such that

Tim, _Hou(t) =v>0. For any 0<6 <1, there is a %, >0 such

that u(t) s e'lv, t 2 t;. Consequently, for 7=t, in (5.16)

and t 2 tl, this yields

’ ea(t-t.)
u(t) s K(l+p)e'atu(o) + Kue 1 supoésétlu(s)

b -1
+ Kue'lv + K [ e'a<t's)u(s)ds P g

a— v
0

The right hand side of this equation has a limit as t - «» which is

i

1 1

l, - l - , =1
2K(l-t—d-)u6 v<mz 0 v<e v,

Therefore, Tim, _, u(t) <v waich is a contrediction. Thus,

u(t) -0 as t =,

Since u(t) -0 as t - o, u(t) has a maximum and an

argument similar to the preceeding shows that u(t) = 0 if u(0) = O.
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Thus there will be a constant such that wu(t) & (const) w(0), t z 0.
Let v(t) = suptésu(s). Since u(t) -0 as t - o, for
every t z 0, there is a t, 2t such that v(t) = v(s) = u(‘bl)

for t s s g%, v(s) < v(tl) for s8> 1% Therefore, from (5,15),

l.

ot

v(t) = u(t,) 5 K(l+n)e

1) lu(o) + Ky supogsétlu(s)
. .
v(s)ds + Ku(L+2)v(t

J.)e-a(tl-s) l)

t
el 4]
0 t

s K(l+p)e'atv(0) + Ku supoésétlv(s)
v(s)ds + Ku(l+§)v(t)

-at
g K(1+p)e " v(0) + Ku supogsgtv(s)

t

+ K“ f e-a(t-S)
0

v(s)ds + Kp.(l+§)v(t).

Since Ku(l+2a-l) < 1/2, we have

t
(5.17) v(t) = Kl(S)e"'mv(o) + K.Z(S)supossstv(s) + K,(8) [ e'a(t'“)v(s)ds
T 0

where

K (8) = K(L+u(®) — < 2K(1+u(B)),
1-Ku(8) (1+2a" )

5) = Ku(®)
(%) 1-xu(5)(1+2a71)

< 2Ku(d).
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Our next objective is to show that v(t) satisfying (5.17)

approaches zero exponentially. To do this, we first show that

5-18)  Y() S K(BIV), Ky(6) = 2K, (B).

In fact, if this is not the case then there is a 7 > 0 such that
v(t) < Kg(8)v(0) for 0<t <, v(t) = K;(8)v(0). Consequently,

(5.17) implies

Ky (8)V(0) = v(7) = [K) (B) + Ky(B)K,(B) + K2<f>)l<5(&‘>)of:L 1v(0)

= [5 + Ky(8) (+a™) K5 (8)v(0)
< Ky (8)v(0)

since K, (8) (L+a™") < 2Ku(8)(1+a™") < /2. This contradiction shows
thaet (5,18) is satisfied for all t 2 O.

Using (5.18) in (5.17), we have

v(t) = Kl(S)e'amv(o) + K2(5)K3(8)(1+afl)v(0), t 20,

’ - -1
Choose P > 0 so ‘that Kl(s)e P < 1/4. Since KQ(G)KB(B)(L+a
< 1/2, it follows that v(B) s (3/4)v(0). Finally, since the initial
value O has no particular significance for autonomous equations,
it follows that v(t+8) s v(t) for all t z O, This clearly implies

the existence cf an o >0, K >0 such that

e



32

v(t) Kue-altv(o).

Consequently, returning to the definition of v end wu, we have
* 1S *S -ltS ~8
|x*(@°) - x*@)] sMe |9 -9 |, tzoO.

Since x*(0) = 0, this implies (5.6) is satisfied,

The above argument has also shown that
. *, 8 8 S ,
K= ccio=x(9),9 in s |¢| & 8/2K).

: L ) S - % S
If Hgl SN BS/QK - Sg is defined by hp" = x;(¢"), then hy is

continuous and
s, 8. QU %, 8 -
hy(@™) = ¢~ + [ B_[4.G(x (7)) + F(x5("))as].

Also, with an argument similar to the above, one shows that

s S S ~8S : S ~8
|hS¢p ) - h865 Y 2 |o -9°|/2 for all ¢°, ¢ in SN B&/2K’

and thus, hs is one-to-one, Since hél = “é is continuous, it 5
follows that hs is a homeomorphism, ;
Frou the fact that x3(0) = 0, x*(¢°) satisfies (5.6) and

0 0
Wux.;@s) _ _£ [dsBI.Js]G(x:(q’s)) + iB?sF(x:((Ps))dS,

we also have

e
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Imat %)) % 26 (wromyn (2o ) o)

and this shows thet .Sg is tengent to 8 at zero,

If F,G have continuous Frechet derivatives F'(p), G'(p)
end satisfy (5.2), then [F'(9)| = n(8) for |o| < B&. From (5.14),
it follows that the derivative @' (y) of 'y with vespect to

¢s evaluated at Ws in 8 is

(@' (WD), = é B 14,0 (v #2(s)o)2(s )¢S + 7 (y +1(s)o%)m(s)¥ a8

+ f B [4.6' (¥, +T(s)<9 yr(s)v® + P (¥, g+ T(6+8 )0 ") T bre )y 5as),
t & 0.

Since IT(S)WS| s K|WS| and u(®) satisfies (5.13), it follows that
(2 ¥0),| = KB (1o yn(e)|¥5] < 2o £z 0
(_@ Y)Wt ( w(8)| ¥ Ing, 2z 0,
Using the fact that the mapping % is a uniform contraction
on %(8), one obtains the differentiability of hs(cps) with re-
spect to vs. The argument for ?ké is applied similarly to the

above to complete the proof of Theorem 5.l.

Corollary 5,1, Under the hypothesis of Theorem 2.1, there is a

8> 0 such that each solution of (5.1) with initial value in By

either approaches zero as t - = (and then exponentially) or leaves
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B6 for some Tinite time., Any golution with initial value in B8
which is defined for t s -r must either approach zero as t = -

or leave B5 for some finite negetive time,

Proof: There ic & k z 1 such that |¢Si £ k|lp| for all ¢ in

C. Suppose & is given as in Theorem 5.1 and choose 0 < & s ®/2Kk,
This 81 serves for the & of the corollary. A similar argument

applies to the last statement of the corollary.
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